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Structures for nine compounds were elucidated in seed coats of two genetically related Brassica
carinata lines. The yellow-seeded line accumulated monomeric kaempferols, phenylpropanoids, and
lignans, while extractable and unextractable proanthocyanidins and a high-performance liquid
chromatography peak containing polymeric-like quercetin/lignan structures were strongly reduced.
The brown-seeded line accumulated large amounts of both types of proanthocyanidins (extractable
and unextractable), as well as phenylpropanoids and lignans equivalent to the amounts in the
yellow-seeded seed coats, but the brown-seeded seed coats lacked kaempferols. A Brassica napus
15K oligoarray experiment indicated that yellow-seeded siliques had more extreme gene expression
changes and a 2.4-fold higher number of upregulated genes than brown-seeded siliques, including a
host of transcription factors and genes with unknown function. Transcripts for six flavonoid genes
(CHS, F3H, FOMT, DFR, GST, and TTG1) were lower and two (F3H and FLS) were higher in
yellow-seeded siliques, but expression of CHI, PAP1, and phenylpropanoid genes was unchanged.
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INTRODUCTION

Rapeseed and canola occupy the second position in seed oil
production volume in the world after soybean (/). Brassica
carinata A. Braun (Ethiopian mustard) is a less well-known
Brassica crop, which is used in Ethiopia and Zambia as both a
leaf vegetable and an oilseed (2). Elsewhere, B. carinata is under
development as a biorefinery crop (3). Cultivars of B. carinata
currently grown for oilseed production are brown-seeded lines,
but the yellow-seeded phenotype has decreased fiber, lignin, and
proanthocyanidins (PAs) in the seeds compared to the brown-
seeded phenotype (4, 5). This yellow-seeded phenotype is inher-
ited as a monogenic, dominant trait (6). Dominance is rare among
yellow-seeded breeding germplasm in other related crop Brassica
species (7). Usually (but not always) yellow-seeded seed is speci-
fied by two or three recessive genes (8, 9).

Flavonoids belong to a group of plant natural products with
variable phenolic structures and play important roles in protec-
tion against biotic and abiotic stress (/0). They are well-known for
their positive effect on health, including antioxidant and anti-
tumor properties (/7). Anthocyanins and PAs are two important
plant pigments, which share common flavonoid intermediates
until the formation of anthocyanidins (Figure 1). Previously, we
reported the correlation of PA pigment reduction with the
reduction of dihydroflavonol reductase (DFR) transcripts and
a rise in flavonoid content in the seed coat of a yellow-seeded
B. carinata line compared to a genetically related brown-seeded
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Figure 1. Flavonoid biosynthetic pathways: chalcone synthase (CHS), chal-
cone isomerase (CHI), flavanone 35-hydroxylase (F3H), flavonoid 3'-hydro-
xylase (F3'H), flavonol synthase (FLS), dihydroflavanol reductase (DFR),
leucoanthocyanidin dioxygenase or anthocyanin synthase (LDOX or ANS),
banyuls or anthocyanidin reductase (BAN or ANR), UDP-glycosyltransferase
(UGT). anthocyanidin 5-methyl-acyl-transferase (ASMAT), mutti-drug and
toxic efflux transporter (MATE, TT12), and glutathione Stransferase (GST,
TT19). Transparent Testa biochemical loci from Arabidopsis are indicated in
parentheses. Regulatory genes known in the Arabidopsis literature are
indicated in small font between asterisks at the loci that they are known to
affect. The 3'5-hydroxylated branch of the pathway leading to myricetin and
trihydroxylated PAs is not shown.

line (5) (Figure 1). We also determined specific metabolites and
transcriptome profiles that protected brown-seeded seedlings
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from exposure to lithium chloride and allowed them to accumu-
late this toxic metal salt to relatively high levels compared to the
yellow-seeded seedlings (/2). In the present study, a more detailed
analysis of seed coat phenolic composition and a microarray of
developing silique gene expression were undertaken for the two
genetically related lines. The outcome will aid in our under-
standing of how to use B. carinata to the fullest advantage in a
bioproduct and bioprocess economy and in plant breeding for
higher seed quality.

MATERIAL AND METHODS

General Experiments and Plant Line Development. All chemicals
used in this study were obtained from Sigma Chemical Co. (St Louis, MO).
Solvents were HPLC-grade. The p-dimethylaminocinnamaldehyde
(DMACA) reagent, consisting of 2% DMACA dissolved in 1.5 N
sulfuric acid (/3), was used to detect PAs histochemically by soaking
dissected seed coat tissues for 30—60 min after imbibition, and then
excess reagent was removed by washing for a short time with water.
The purple/black color of the stained seed coat was very stable for
about 12—24 h.

Genetically related B. carinata lines were obtained by single-seed
descent from backcross (BC,) lines with yellow- and brown-seeded seeds
from a cross between an Ethiopian yellow-seeded mustard accession
PGRCJ/E 21164 and a brown-seeded Ethiopian mustard accession
S67 and a backcross between the dominant F; yellow-seeded seed
and the parental brown-seeded line (/4). Developing siliques and bulked
seed increases were obtained by planting S; seeds (generation 3) in a soil-
less potting mixture composed mainly of sphagnum moss and slower
release fertilizer at pH 5.8 (Redi-Earth, Grace and Co., Canada). Pots
with planted seeds were placed in a controlled environment chamber
(Conviron, Winnipeg, Canada) with an 18 h photoperiod (22 °C dark and
20 °C light) under fluorescent and incandescent lighting (320—510 uC)
tested with a model LI-185B luminometer (Licor Bioscience, Lincoln,
NB). Seeds were crushed in a Reliance grinder (Baldor, CA), and seed
coats were separated from the meal in a homemade aspirator at Plant Gene
Resources Canada (Saskatoon, Saskatchewan, Canada).

Flavonoids and PA Analysis. Small-scale extracts were prepared
from 200 mg of seed coat ground in liquid N, with 10 mL of acetone/water
(70:30, v/v) for 10 min. Ground samples were extracted 3 times for 24 h in
the dark with 50 mL of acetone/water (70:30, v/v). The extracts were
combined and evaporated to dryness at 35 °C under vacuum, and the
residue was redissolved to 10 mg/mL in methanol/water (50:50, v/v) and
used for analysis of flavonoids, lignans, and phenylpropanoids. Liquid
chromatography—mass spectrometry (LC—MS) was performed on a
Zorbax Cig column (150 x 4.6 mm, 5 um inner diameter, Mississauga,
Ontario, Canada) using Agilent 1100 high-performance liquid chroma-
tography (HPLC) coupled to a photodiode array detector and an “API
Qstar XL” pulsar hybrid LC—MS/MS system (Applied Biosystems) in the
electrospray index (ESI) mode. Compounds 1—18, which were detected in
small-scale extracts, were used as a basis for large-scale extractions and
identification of nine compounds from yellow-seeded seed coats (1, 7, 8,
10, 13—16, and 18).

For large-scale extracts, powdered yellow-seeded B. carinata seed coats
(150 g) were extracted 3 times with 70% MeOH (500 mL) at room
temperature to purify flavonoids and phenolics present in the yellow-
seeded seed coats but absent from brown-seeded seed coat. The extract was
concentrated to give a brown residue (8 g), which was eluted into 96 tubes
on an open Sephadex LH-20 chromatography column (400 g of dry
weight, 80 x 5 cm) with 70% MeOH (4 L) over 90 min and combined to
yield five fractions. Fraction 1 (tubes 1—20) showed four major spots on
silica gel SilG/U254 thin-layer chromatography (TLC) plates (0.20 mM,
Macherey-Nagel, Bethlehem, PA) at 4,54 when detected using 0.5%
anisaldehyde in 10% H,SO,. Fraction 1 was applied to an open silica
gel column (Silica 60M, 200—300 mesh, GE Healthcare, Piscataway, NJ)
and chromatographed with chloroform/methanol (3:1). Fractions were
collected and detected by TLC, and then the eluent (F1-3) was separated
by semi-preparative HPLC—ultraviolet (UV) on a 250 x 25 mm, inner
diameter 5 um, Zorbax Cg column (Agilent, Mississauga, Ontario,
Canada) with a gradient from 20% aqueous MeOH to 100% MeOH
to produce compounds 1 (3 mg), 8 (56 mg), and 10 (4 mg). Fraction 2
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(tubes 21—40), showing five spots by identical TLC conditions, was re-
applied to Sephadex LH-20 (200 g of dry weight) and eluted with 70%
acetone (1.5 L), and then subfraction F2-2 was purified by semi-prepara-
tive HPLC—UV asabove to produce compounds 7 (9 mg), 14 (28 mg), and
15 (2 mg). Fraction 3 (tubes 41—60) and fraction 4 (tubes 61—80) were
directly applied as concentrates to the semi-preparative HPLC as above to
recover compounds 13 (31 mg) and 18 (22 mg). Compound 16 (3 mg) was
isolated from fraction 5 (tube 81—96) on the open silica gel column eluted
with a step gradient of chloroform/methanol [nine 1 L steps from 9:1 (v/v)
to 1:1 (v/v)].

Purified compounds were confirmed by LC—MS/MS as above and
nuclear magnetic resonance (NMR) as follows. Purified compounds were
dried under nitrogen and dissolved in 500 uL of freshly opened dimethyl-
sulfoxide (DMSO)-ds [99.96 + 0.03 tetramethylsilane (TMS)], and 'H
NMR and heteronuclear multiple-bond correlation (HMBC) spectra were
measured with a Bruker Avance 500 NMR spectrometer equipped with a
Bruker 5 mm inverse triple-resonance TXI probe (Bruker Biospin,
Germany). Chemical shifts (0) were expressed in parts per million
(ppm), and coupling constants (J) are reported in Hertz (Hz). Compound
structures were identified by a comparison of HPLC retention time, UV
spectroscopic parameters, and MS/MS fragmentation patterns to those of
authentic standards (where available) and a comparison of the NMR data
to literature values (/5—295).

Determination of Extractable and Unextractable PA by BuOH/
HCI Hydrolysis. The butanol/HCl assay was used to quantify the total
amount of extractable PAs in B. carinata seed coat according to Naczk
etal. (26). Ineach tube, 0.1 mL (10 mg/mL) of the small-scale 70% acetone
extract was incubated for 75 min at 95 °C with 2 mL of n-BuOH/HCI
reagent [95:5 (v/v) with 0.1 mL of FeSO,4in 2 M HCI]. After cooling in the
dark and centrifugation, absorbance of red anthocyanidins in the super-
natant (. = 525 nm) was determined after subtraction of the non-PA-
related background scan. Samples were measured against a blank of
n-BuOH/HCI reagent, and the value was calculated using PA B, as a
standard (Sigma). Unextractable PA was measured by heating the solid
residue from the extractable PA method 3 times with 2 mL of freshly
prepared n-BuOH/HCI reagent as above (27).

DNA Microarray Analysis. A 15K Brassica napus microarray used
in the experiment was spotted at the Microarray and Proteomics Facility,
University of Alberta, Edmonton, Alberta, Canada, using 50-mer B. napus
oligonucleotide sequences based on expressed sequence tag (EST) deposits
at the Saskatoon Research Centre, Agriculture and Agri-Food Canada.
Total RNA from 90-day-old developing siliques (22 days after pollination)
of the yellow- and brown-seeded B. carinata lines was extracted using a
commercial RNAEasy mini kit (Qiagen, Valencia, CA). Three indepen-
dent silique RNA extractions were collected for each line, and the two
contrasting RNA sets were prepared as Cy5- and Cy3- (reactive water-
soluble fluorescent dyes of the cyanine dye family) labeled cDNA probe
pairs. RNA amplification, labeling with Cy3- or Cy5-dCTP dyes (GE
Healthcare, Buckingamshire, U.K.), and probe fragmentation were car-
ried out using an Ambion AmnoAllyl MessageAmp [T RNA amplification
kit according to the instructions of the manufacturer (Ambion, Austin,
TX). A dye swap (Cy3/CyS5) experiment was performed for each biological
replicate. The B. napus oligoarray was hybridized with the Cy5- and Cy3-
labeled probe pairs at 65 °C in a solution of 25% formamide, 5x SSC (150
mM sodium chloride and 15 mM sodium citrate), 0.1% sodium dodecyl
sulfate (SDS), and 0.1 mg/mL sonicated salmon sperm DNA at 65 °C for
17 hina MAUI hybridization station (BioMicro Systems, Salt Lake City,
UT). Labeling, hybridization, and post-hybridization washing were con-
ducted according to directions in the CyScribe post-labeling kit (GE
Healthcare, Piscataway, NJ). After the post-hybridization washes, slides
were scanned with the Genepix 4000 (Axon, CA). Image analysis and
feature extractions were performed with ArrayPro analyzer software
(Media Cybernetics, Inc., Bethesda, MD). The intensity of each spot at
Asas nm (Cy5) and Ag47 nm (Cy3) was transformed into a yellow-seeded/
brown-seeded ratio. Initial data processing was performed using tools
available in a BASE database (/2). The filtered data were analyzed
using Gene-Spring, version 6.1 (Silicon Genetics, Redwood City, CA).
Transcripts showing increased or reduced expression were highlighted
on the array, which previously had been annotated using the Arabi-
dopsis genome using BLASTn and gene ontology. Cluster analysis of
Arabidopsis Transparent Testa loci and Arabidopsis loci homologous to
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array genes alerted by the B. carinata transcriptome was conducted
using ClusterX.

Quantitative Real-Time Polymerase Chain Reaction (QRT-PCR).
RNA aliquots from the microarray experiment were used in RT reactions
with SuperScript 11 First-Strand Synthesis SuperMix (Invitrogen, Carlsbad,
CA) according to the instructions of the manufacturer. Gene BNACT2 was
chosen as the endogenous reference gene as described in Li et al. (28). Primer
sequences for qRT-PCR were designed using online Perfect Oligo Design
software provided by Invitrogen based on Brassica EST and homologous
Arabidopsis cDNA sequences as described (12) (Table 1). The qRT-PCR
mixtures contained 8 uL of diluted B. carinata cDNA (or 8 uL for control
reactions), 10 uL of 2x SYBR Green qPCR Master Mix (Invitrogen), and
200 nM of each gene-specific primer in a final volume of 20 uL. The qRT-
PCR reactions were performed using a StepOnePlus Real-Time PCR system
(Applied Biosystems) as described (28) under the following conditions: 2 min
at 50 °C, followed by 2 min at 95 °C, and 40 cycles of 95 °C (15 s) and 62 °C
(30 s) in a 96-well optical reaction plate (Bio-Rad Laboratories, Hercules,
CA). For each pair of primers, gel electrophoresis and melting curve analyses

Table 1. gqRT-PCR Primers Used in This Study
genes? primers

forward: 5'-AGATGAAGACGCAAGGTGCT-3
reverse: 5'-AACCTCCCAGCTTCAACAGA-3
forward: 5'-CGGGTCACAGAACTCATCCT-3
reverse: 5'-GAGGTTGAAGAGCGAGTTGG-3
forward: 5’-ACCGCAAACCCACTTGTAAA-3
reverse: 5'-GCCTTCAAAGCGGTACAGAG-3
forward: 5'-TCCCATCCCATGATACCAAC-3'
reverse: 5'-TGAAGCGATCAATCTGGATG-3'
forward: 5’-CGGTTACGGACGATTCAGTT-3'
reverse: 5'-GGATGCACAACCAAAGGAAC-3
forward: 5’-TGATCAACGGAAGCAAGAGA-3’
reverse: 5'-TGGGGTCGTTCTTTGATTTT-3
forward: 5-CCCACCAGAAGAAGGAACAG-3’
reverse: 5'-ACCGAGTGTAGGCTGCTTGT-3’
forward: 5’-GATGTTACCGGATGGACGAG-3'
BN23926-AT1G33700-unknown o\ erge: 5/. TGCCTCATAGATTCCCCTTG-Y
forward: 5’-GAAGGCACTTCTCGACTTGG-3
reverse: 5'-TCAAAGCTTCCCTCCACTGT-3
forward: 5’-AATCATGCTCGACCGTATCC-3'
reverse: 5'-GGACACACCATCCTCGTTCT-3'
forward: 5’-TCGACGATGTTGGTGAGAAA-3
reverse: 5'-CAGGAGGTAACGCGAAGAAG-3
forward: 5’-CATCGGTGCTGAGAGATTCA-3'
reverse: 5'-CACTGAGCACGATGTTACCG-3'

BN24435-AT5G65690-PPC

BN25290-AT5G45780-LRT

BN24247-AT5G46900-LTP

BN26434-AT3G19010-FLS

BN17561-AT5G07990-F3'H

BN17805-AT2G03740-LEA

BN21104-AT2G41070-bZIP12

BN25866-AT1G25460-DFR

BN13710-AT5G54160-FOMT

BN15497-AT3G51240-F3H

BNACT2

@Full names of the genes are found in Tables 2 and 3.
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were performed to ensure that only a single PCR amplicon of the expected
length and melting temperature was generated. Each sample was assayed in
triplicate, and data were analyzed using the Step-One Software, version 2.0
(Applied Biosystems). The level of each mRNA was calculated using the
mean threshold cycle (Ct) value and normalized to that of the reference gene
BnACT?2. All results were shown as the means of at least three biological
replicates (RNA extracts) with corresponding standard deviations (SDs).

Statistical Analysis. Phytochemical data were expressed as mean +
standard error on samples developed from three independent extractions,
and calculated data was statistically analyzed [analysis of variation
(ANOVA)] for least significance differences (LSD) at p <0.05 using
SAS 8.0 (SAS Institute, Inc., Cary, NC). For microarray analysis, back-
ground-corrected log ratio intensity values were scaled to have similar
distribution and consistency across and among arrays. The calculation
ANOVA model, log(yjig) = p + A; + D + Ti + Gy + AGjy + DGjo +
TGy + €, was employed to detect differentially expressed genes using
the normalized data according to Li et al. (28), where log(y;j,,) represents
the background-corrected and normalized natural logarithm of the
intensity of the rth replicate of gene g on array i, with dye j and
treatment/condition k, u represents the average natural logarithm of gene
intensity over all of the genes, arrays, and dyes, 4, D, T, and G represent
the array, dye, treatment, and main gene effects, respectively, and &,
represents normal distribution with a mean of 0.

RESULTS

Extractable and Unextractable PAs in Seed Coats. BuOH/HCI
hydrolysis and DMACA histochemical staining were used to
compare extractable and non-extractable PAs in the seed coats of
B. carinata. Seed coats of the brown-seeded line accumulated
10-fold higher levels of extractable and non-extractable PAs than
those of the yellow-seeded line (panels A—C of Figure 2). These
differences could be seen readily when seed coats from the brown-
seeded line changed from a red—brown color to a purple—black
color when stained with DMACA (Figure 2E). DMACA stimu-
lates this color change when it binds to flavan-3',4’-diols, includ-
ing PA and its precursors. In contrast, seed coat tissue from the
yellow-seeded line remained a light yellow color, except for very
small intense purple—black spots scattered throughout the seed
coat (indicated by arrows in Figure 2D).

Flavonoids, Phenylpropanoids, and Lignans in B. carinata Seed
Coats. LC-time-of-flight (TOF)-MS of 70% acetone extracts of
B. carinata seed coats showed 13 distinct peaks in the brown-
seeded line, while the yellow-seeded line had 5 additional peaks
(7,9, 13, 15, and 18) not reported previously in B. carinata (Figure 3).
Semi-preparative extraction in 70% MeOH led to the isolation of

c

Figure 2. Analysis of extractable and non-extractable PAs and flavonoids in seed coats of brown- and yellow-seeded B. carinata. (A) Quantification of PAs
and total flavonoids. Bars represent the standard error of the means for three independent extractions. Duncan’s new multiple range tests were used to indicate
significant differences (x) between yellow- and brown-seeded seed coats at p < 0.05. (B) Unstained yellow-seeded seed coat. (C) Unstained brown-seeded
seed coat. (D) DMACA-stained yellow-seeded seed coat. Arrows indicate DMACA-stained PA spots scattered over the pale tissue. (E) DMACA-stained

brown-seeded seed coat.
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9 of these compounds, with structures identified by retention time,
UV spectroscopic parameters, MS/MS fragmentation patterns,
and NMR data compared to commercial standards or from values
published by other laboratories (15 —25). Our results indicated that
the yellow-seeded seed coat extracts accumulated flavonoids,
phenylpropanoids, and lignans, while the brown-seeded seed coat
extracts accumulated only phenylpropanoids and lignans (Figures 3
and 4). Flavonoids newly accumulated in the yellow-seeded seed
coats included kaempferol 3-sophoroside 7-rhamnoside (peak 7),
kaempferol 3-glucoside 7-rhamnoside (peak 13), kaempferol
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Figure 3. Representative LC—MS total ion chromatogram of 70% acet-
one extract of brown- and yellow-seeded B. carinata seed coat. K,
kaempferol glycosides; L, lignans; S, sinapoylglucosides; L—Q, lignan
quercetin mixture. LC—MS/MS and UV spectroscopic data for labeled
peaks were consistent with literature values (15—25). Peak 1, pinoresinol
diglucopyranoside (L); peak 2, mixture of lignin fragments and quercetin
derivatives with sizes ranging between 800 and 1600 Da (L—Q); peaks
3—6, not elucidated; peak 7, kaempferol 3-sophoroside 7-rhamnoside (K);
peak 8, 75,8R,8' R-(—)-lariciresinol-4,4’ -bis-O-glucopyranoside (L); peak
9, not elucidated; peak 10, 3,3',4,4’ 9-pentahydroxy-7,9'-epoxylignan 3,3'-
dimethy! ether, 4-glucopyranoside (L); peaks 11 and 12, not elucidated;
peak 13, kaempferol 3-glucoside 7-rhamnoside (K); peak 14, 1,2-disin-
apoylgentiobiose (S); peak 15, kaempferol 3-glucoside 7-xyloside (K);
peak 16, 1,2-disinapoylglucose (S); peak 17, not elucidated; peak 18,
kaempferol 3-xyloside 7-rhamnoside (K).
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3-glucoside 7-xyloside (peak 15), and kaempferol 3-xyloside
7-rhamnoside (peak 18) (Figure 4). Phenylpropanoids and identifi-
able lignans, which were unchanged in both seed coat types, were
determined to be 1,2-disinapoylgentiobiose (peak 14), 1,2-disina-
poylglucose (peak 16), pinoresinol diglucopyranoside (peak 1),
78,8 R,8' R-(—)-lariciresinol-4,4'-bis-O--p-glucopyranoside
(peak 8), and 3,3',4.4',9-pentahydroxy-7,9’-epoxylignan 3,3'-di-
methyl ether, 4-glucopyranoside (peak 10).

Both yellow- and brown-seeded seed coats accumulated large
amounts of a single HPLC peak (peak 2). This major peak
contained a mixture of compounds indicated by its UV spectro-
scopic properties of lignan fragments and quercetin derivatives
and was composed of mixed species with molecular sizes ranging
between 800 and 1600 Da after LC—MS analysis. The peak was
0.4-fold lower in yellow-seeded seed coats than in brown-seeded
tissues and could not be separated into individual components
using either C;g or Cg columns. Hence, the full identity of peak 2
components was not confirmed by MS/MS.

Expression Analysis Using Microarray and Q-PCR Analysis
of Developing Siliques. A comparison of gene expression in
B. carinata developing siliques 22 days after pollination (DAP)
was conducted using a 15K gene B. napus oligoarray developed by
the Saskatoon Research Centre. A total of 1316 genes showed
statistically significant upregulation, while 832 genes showed
statistically significant downregulation. B. carinata genes deter-
mined by the array to be up- or downregulated >2-fold in the
yellow-seeded line relative to the brown-seeded line were catalo-
gued and placed into nine categories based on gene function
annotated from the closest Arabidopsis homologue (Tables 2
and 3). Although strong differences between the two lines were
noted for individual genes, the numbers of genes with differential
expression in the yellow-seeded siliques relative to the brown-
seeded siliques were quite similar in the categories of defense,
pathogenesis, hormone-related, and aging (10 versus 7, respectively),
primary metabolism (12 versus 9, respectively), secondary metabo-
lism (15 versus 13, respectively), transport (3 versus 3, respectively),
and others with some type of functional identity (37 versus 41,
respectively). In contrast, a 2.5-fold higher number of signal
transduction genes (13 versus 5, respectively), transcription factors
(19 versus 8, respectively), and proteins with unknown functions (34
versus 14, respectively) were upregulated and downregulated in
the yellow-seeded siliques relative to the brown-seeded siliques.
Upregulated genes also had more extreme expression profiles
than downregulated genes in the yellow-seeded siliques relative to
brown-seeded siliques. Q-PCR of 11 of these genes was consistent
with the microarray data (Figure 5). Expression of genes related to
Brassica-specific compounds was mainly stable. Only a myrosinase-
associated protein BN20003 (homologous to At1g54000) was

H,CO ~ ;é
OH 1= HO

1: R4=CHj; R,=Clc;

Figure 4. Structures of flavonoids, lignans, and phenylpropanoids found in yellow-seeded B. carinata seed coat. Soph, sophoroside; Rhm, rhamnoside; Glc,

glucoside; Xyl, xyloside.
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Figure 5. qRT-PCR of 11 genes confirming the microarray expression
profile. Full names for the confirmed genes are found in Tables 2 and 3.

noteworthy (i.e., downregulated 2.9-fold in yellow-seeded siliques
compared to brown-seeded siliques).

Because kaempferols were accumulated preferentially in seed
coats of the yellow-seeded line, we examined the microarray data
for changes in individual flavonoid and cytochrome P450 genes in
developing siliques. A flavonol synthase (FLS), a flavonoid 3’
hydroxylase (F3'H) closely related to the Arabidopsis Transparent
Testa 7 (TT7) F3'H gene At5207990, and three cytochrome P450
genes were upregulated more than 2-fold in the yellow-seeded
siliques relative to the brown-seeded siliques (Table 2). Q-PCR
analysis of FLS and F3'H correlated well with the upregulated
microarray data (Figure 5). A substantial number of flavonoid
genes were also downregulated more than 2-fold in the yellow-
seeded siliques. These included a chalcone synthase (CHS) closely
related to At5g13930 (7T74), two distinct flavanone 3-hydroxy-
lases (F3H) (including one closely related to At3g51240, T76), a
dihydroflavonol-4-reductase (DFR) related to Atlg25460 (and
also annotated as a potential cinnamoyl CoA reductase), Trans-
parent Testa Glabra 1 (TTGI), glutathione S-transferase (GST)
closely related to At5g17220 (TT19), and a flavonol-3-O-methyl
transferase (FOMT) (Table 3). F3H, DFR, and FOMT expres-
sion as measured by Q-PCR correlated well with the down-
regulated microarray expression pattern for these three genes
(Figure 5). Expression of PAPI and chalcone isomerase (CHI,
TT5) was not significantly different between the lines (data not
shown). Expression patterns for other 77T genes [TT1, TT2, TTS,
TTG2, TT3 (DFR), ANS (LDOX), BAN, AHAIO, and TT10]
could not be measured, because oligos for them were not
represented on the microarray.

Seven genes in the transcription factor category were more than
3-fold higher in expression in the yellow-seeded developing siliques
compared to brown-seeded developing siliques (Table 2). These
included a B3 transcription factor family protein (hybridizing to
BN26979, homologous to At2g24650, ~5-fold up), a WRKY
factor (hybridizing to BN24410, homologous to At1g69810, 3.3-
fold up), a bZIP protein (hybridizing to BN18693, homologous to
At5g10030, 3-fold up), and four zinc ring finger genes (ranging
from 2.8- to 3-fold higher). WD40 repeat proteins and several other
factors were also elevated in the yellow-seeded siliques. Genes in the
transcription factor category that were downregulated in the
yellow-seeded line included bZIP12 (hybridizing to BN21104,
homologous to At2g41070, 6.3-fold down) (Table 3).

A number of known genes in categories other than secondary
metabolism and transcription factors were highly upregulated in
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the yellow-seeded siliques (Table 2). These included a lipid
transfer protein with protease inhibitor function (hybridizing
to BN24247, homologous to At5g46900, 17.8-fold up), a phosphoe-
nol pyruvate carboxylase (hybridizing to BN24435, homologous to
At5g65690, 17-fold up), a leucine-rich repeat transmembrane kinase
(hybridizing to BN25290, homologous to At5g45780, 9.4-fold up), a
glycerophosphoryl diester phosphodiesterase (hybridizing to
BN17169, homologous to At1g74210, 6-fold up), an auxin respon-
sive protein in the AUX/IAA family (hybridizing to BN25488,
homologous to At4g32280, 5.2-fold up), and a ubiquitin-conjugat-
ing enzyme COP10 (hybridizing to BN20290, homologous to
At3g13550, 4-fold up). These six upregulated genes had the strongest
differences in expression between the yellow- and brown-seeded
siliques. Overall, downregulated genes had much less extreme
expression differences.

A substantial portion of the transcriptome changes were genes
for proteins with unknown function. A total of 33 of these
unknown genes were upregulated >2-fold in yellow-seeded sili-
ques (Table 2). Fewer genes of unknown function were down-
regulated in the yellow-seeded siliques compared to those that
were upregulated. Noteworthy genes in this category included an
expressed protein hybridizing to BN24171 (homologous to
At1g80240) and 5.2-fold higher in the yellow-seeded line and an
expressed protein hybridizing to BN23926 (homologous to
At1g33700) and 4.8-fold lower in the yellow-seeded line.

To obtain a sense for whether “alerted” B. carinata genes were
clustered into specific regions of the genome, Arabidopsis gene
loci homologous to B. napus genes and highlighted by the changes
in the B. carinata transcriptome were layered onto a physical
representation of the Arabidopsis genome. Their relative positions
were evaluated visually for clustering in Arabidopsis and B. napus
based on segmental similarities between these two genomes (29).
Although one area on the upper arm of At5g contained a cluster
of 13 genes highlighted on the array, including TT7 (F3'H), the
remainder of the highlighted genes were scattered relatively
evenly across the five Arabidopsis chromosomes (data not
shown).

DISCUSSION

This study elucidated differences in seed coat phenolics and
developing silique gene expression profiles for two genetically
related lines of yellow- and brown-seeded B. carinata. We
extended previous studies on phenolics in Brassica species seed
coats (4, 5, 26, 27) by quantifying phenylpropanoids, lignans,
flavonol glycosides, and two types of PA (extractable and non-
extractable) to give a more detailed “picture” of seed-coat-specific
phenolic composition than previously known in this species. Five
kaempferol glycosides recovered from the yellow-seeded seed
coats have never been detected before in B. carinata. Although
two of these studies showed that yellow-seeded seed coats of
B. carinata have reduced lignin content (4, 5), the present study
shows that structurally related methanol-soluble compounds
(sinapoyl glycosides and identifiable lignans) (28) did not change
in either line. This reduction in lignin occurred without a change
in phenylpropanoids (i.e., sinapoyl glycosides or lignans) and was
distinct from the change in flavonoid composition, which accom-
panied the reduction of PA in the B. carinata yellow-seeded seed
coats. Here, there was a shift in accumulation of new kaempferol
glycosides in the yellow-seeded seed coats (compounds 7, 13, 15,
and 18). Our phytochemical results are consistent with the rise in
dihydroflavonols and flavonols observed earlier in yellow-seeded
seed coats (5), although the rise in kaempferols in yellow-seeded
seed coats was not proportional to the reduction in PAs and
lignin.
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The decrease in yellow-seeded silique transcripts for Transpar-
ent Testa genes CHS (TT4), F3H (TT6), GST (TT19), and the
W D40 regulatory gene, TTG 1, and the increase in transcripts for
FLS were consistent with the strong decrease in both types of PAs
and the increase in kaempferol glycosides in yellow-seeded seed
coats. In addition, they are consistent with the reduction in DFR
expression noted in the earlier study of these lines (5). B. carinata
genes homologous to 7T genes could not be assessed, because
they were not represented on the array. Genes specifying phenolic
glycosides, lignans, or lignins on the microarray, i.e., phenylala-
nine ammonia lyase, cinnamoyl alcohol dehydrogenase, cinna-
moyl CoA reductase, and dirigent proteins, were mainly not
affected by the yellow-seeded trait, except potentially for one
homologue of Atl1g25460 (annotated as both a DFR and a CCR)
and a flavonol-O-methyl transferase (FOMT, homologous to
At5g54160, also annotated as a phenolic acid OMT). These
developing silique expression data, together with the fact that
both seed coat types accumulate equivalent levels of lignans and
phenolic glycosides, suggest that non-structural phenolics may
accumulate through a different regulatory mechanism compared
to seed coat structural phenolics, such as lignin. Regulatory
gene(s), which specify PA and the dominant yellow-seeded color
trait in B. carinata, may affect less known steps in lignin
biosynthesis.

The increase in F3'H transcripts in the yellow-seeded develop-
ing siliques is consistent with the accumulation of quercetin in
embryos of the near-isogenic yellow line in an earlier study (5) but
does not correlate with the appearance of new kaempferol deri-
vatives and the reduction in higher molecular-weight quercetin
derivatives in HPLC peak 2. Increased kaempferol glycosides and
reduced quercetin derivatives in the pale seed coats suggests that
mono- and dihydroxylated flavonols (and therefore F3'H) may
be unequally represented in developing embryos and developing
seed coats in B. carinata. Additionally, lignans could be “tied up”
in the larger molecular-weight lignan-type structures in HPLC
peak 2. Correlations between flavonoid gene expression and
phenolics will only be fully understood when the complete com-
position and proportion of quercetin and lignan derivatives in
peak 2 are known for both genetically related lines and when the
tissue-specific nature and copy number of F3'H in B. carinata is
known.

Transcriptome analysis indicated elevated transcript profiles
for a disproportionately large number of regulatory genes and
proteins of unknown function in yellow-seeded developing sili-
ques compared to brown-seeded developing siliques. These genes
are inherited along with the yellow-seeded, reduced seed PA/
lignin traits as a single dominant recombinant unit in B. carinata.
The yellow-seeded trait in most other Brassica species in the
triangle of U is specified by at least two and sometimes three
recessive genes (7—9), although at least two semi-dominant
yellow-seeded phenotypes are now known for B. napus (14).
The dominant nature of the yellow-seeded trait and the dispro-
portionate number of regulatory and unknown developing silique
genes with increased expression suggest that a single global
regulatory gene may control these upregulated genes. Because
B. carinatahas a duplicated genome, a duplicated regulatory gene
may also be involved. The chalcone synthase gene in soybean has
been shown to have a complex structure composed of duplicated
copies in a sense orientation and one additional copy in an anti-
sense orientation reducing their impact (30).

Determining the contribution of alerted B. carinata transcrip-
tion factors and unknown genes to the dominant yellow-seeded
phenotype could be accelerated by testing the phenotypes
of Arabidopsis mutations made available to the public over the
past 20 years, including knockdown/out and activation lines (28).
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The utility of Arabidopsis mutations will depend upon whether a
dominant regulatory gene for the absence of PA exists in
Arabidopsis. Global regulatory factors could also be determined
using the “alerted” regulatory genes and “unknown” genes as bait
in yeast two-hybrid screens and RNAI gene “knockout” studies
or gene overexpression studies in B. carinata. It is possible that
only small sequence differences exist between a global regulatory
gene specifying the dominant dark seed coat color in other
Brassica species and the semi-dominant yellow-seeded color
found in B. carinata. For example, a small sequence change to
the activation site of the C/ anthocyanin regulatory gene changed
it from an activator into an inhibitor (37). B. napus physical gene
maps and bacterial artificial chromosome libraries also are
available to dissect out the dominant yellow-seeded trait in
B. napus. Physical maps for B. carinata will become available once
the sequencing of the Brassica B genome is complete. Amplified
fragment length polymorphism (AFLP) markers were recently
developed to define genetic diversity in B. carinata (32, 33). Expres-
sion changes for additional genes (77 and others) also could be
determined using a new 90K B. napus Canadian oligonucleotide
array (http://www.dotm.ca/) or a 105K B. napus oligoarray
(Agilent Technologies) and with new arrays that include B genome
sequences as they become available.
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